Copied to
clipboard

G = D12.33C23order 192 = 26·3

14th non-split extension by D12 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12.38C24, D12.33C23, 2+ 1+4:9S3, Dic6.33C23, Q8oD12:9C2, C4oD4.32D6, (C3xD4).37D4, C3:6(D4oSD16), C3:C8.17C23, (C3xQ8).37D4, D4:S3:21C22, (C2xD4).118D6, Q8.13D6:9C2, C12.270(C2xD4), C4.38(S3xC23), Q8.14D6:11C2, D12:6C22:12C2, C4oD12:11C22, D4.19(C3:D4), D4.Dic3:11C2, D4.S3:21C22, Q8.26(C3:D4), (C3xD4).26C23, D4.26(C22xS3), C3:Q16:18C22, C6.172(C22xD4), (C3xQ8).26C23, Q8.36(C22xS3), (C2xC12).119C23, Q8:2S3:22C22, (C2xDic6):43C22, (C6xD4).169C22, C4.Dic3:17C22, (C3x2+ 1+4):3C2, (C2xC3:C8):25C22, (C2xC6).86(C2xD4), C4.76(C2xC3:D4), (C2xD4.S3):32C2, C22.7(C2xC3:D4), C2.45(C22xC3:D4), (C2xC4).103(C22xS3), (C3xC4oD4).29C22, SmallGroup(192,1395)

Series: Derived Chief Lower central Upper central

C1C12 — D12.33C23
C1C3C6C12D12C4oD12Q8oD12 — D12.33C23
C3C6C12 — D12.33C23
C1C2C4oD42+ 1+4

Generators and relations for D12.33C23
 G = < a,b,c,d,e | a12=b2=1, c2=d2=e2=a6, bab=a-1, ac=ca, ad=da, eae-1=a7, bc=cb, bd=db, ebe-1=a3b, dcd-1=a6c, ce=ec, de=ed >

Subgroups: 600 in 258 conjugacy classes, 107 normal (20 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, Dic3, C12, C12, C12, D6, C2xC6, C2xC6, C2xC8, M4(2), D8, SD16, Q16, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C4oD4, C3:C8, C3:C8, Dic6, Dic6, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C22xC6, C8oD4, C2xSD16, C4oD8, C8:C22, C8.C22, 2+ 1+4, 2- 1+4, C2xC3:C8, C4.Dic3, D4:S3, D4.S3, Q8:2S3, C3:Q16, C2xDic6, C4oD12, D4:2S3, S3xQ8, C6xD4, C6xD4, C3xC4oD4, C3xC4oD4, C3xC4oD4, D4oSD16, D12:6C22, C2xD4.S3, D4.Dic3, Q8.13D6, Q8.14D6, Q8oD12, C3x2+ 1+4, D12.33C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C3:D4, C22xS3, C22xD4, C2xC3:D4, S3xC23, D4oSD16, C22xC3:D4, D12.33C23

Smallest permutation representation of D12.33C23
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 34)(2 33)(3 32)(4 31)(5 30)(6 29)(7 28)(8 27)(9 26)(10 25)(11 36)(12 35)(13 47)(14 46)(15 45)(16 44)(17 43)(18 42)(19 41)(20 40)(21 39)(22 38)(23 37)(24 48)
(1 19 7 13)(2 20 8 14)(3 21 9 15)(4 22 10 16)(5 23 11 17)(6 24 12 18)(25 44 31 38)(26 45 32 39)(27 46 33 40)(28 47 34 41)(29 48 35 42)(30 37 36 43)
(1 4 7 10)(2 5 8 11)(3 6 9 12)(13 22 19 16)(14 23 20 17)(15 24 21 18)(25 34 31 28)(26 35 32 29)(27 36 33 30)(37 40 43 46)(38 41 44 47)(39 42 45 48)
(1 13 7 19)(2 20 8 14)(3 15 9 21)(4 22 10 16)(5 17 11 23)(6 24 12 18)(25 41 31 47)(26 48 32 42)(27 43 33 37)(28 38 34 44)(29 45 35 39)(30 40 36 46)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,36)(12,35)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,19,7,13)(2,20,8,14)(3,21,9,15)(4,22,10,16)(5,23,11,17)(6,24,12,18)(25,44,31,38)(26,45,32,39)(27,46,33,40)(28,47,34,41)(29,48,35,42)(30,37,36,43), (1,4,7,10)(2,5,8,11)(3,6,9,12)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48), (1,13,7,19)(2,20,8,14)(3,15,9,21)(4,22,10,16)(5,17,11,23)(6,24,12,18)(25,41,31,47)(26,48,32,42)(27,43,33,37)(28,38,34,44)(29,45,35,39)(30,40,36,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34)(2,33)(3,32)(4,31)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,36)(12,35)(13,47)(14,46)(15,45)(16,44)(17,43)(18,42)(19,41)(20,40)(21,39)(22,38)(23,37)(24,48), (1,19,7,13)(2,20,8,14)(3,21,9,15)(4,22,10,16)(5,23,11,17)(6,24,12,18)(25,44,31,38)(26,45,32,39)(27,46,33,40)(28,47,34,41)(29,48,35,42)(30,37,36,43), (1,4,7,10)(2,5,8,11)(3,6,9,12)(13,22,19,16)(14,23,20,17)(15,24,21,18)(25,34,31,28)(26,35,32,29)(27,36,33,30)(37,40,43,46)(38,41,44,47)(39,42,45,48), (1,13,7,19)(2,20,8,14)(3,15,9,21)(4,22,10,16)(5,17,11,23)(6,24,12,18)(25,41,31,47)(26,48,32,42)(27,43,33,37)(28,38,34,44)(29,45,35,39)(30,40,36,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,34),(2,33),(3,32),(4,31),(5,30),(6,29),(7,28),(8,27),(9,26),(10,25),(11,36),(12,35),(13,47),(14,46),(15,45),(16,44),(17,43),(18,42),(19,41),(20,40),(21,39),(22,38),(23,37),(24,48)], [(1,19,7,13),(2,20,8,14),(3,21,9,15),(4,22,10,16),(5,23,11,17),(6,24,12,18),(25,44,31,38),(26,45,32,39),(27,46,33,40),(28,47,34,41),(29,48,35,42),(30,37,36,43)], [(1,4,7,10),(2,5,8,11),(3,6,9,12),(13,22,19,16),(14,23,20,17),(15,24,21,18),(25,34,31,28),(26,35,32,29),(27,36,33,30),(37,40,43,46),(38,41,44,47),(39,42,45,48)], [(1,13,7,19),(2,20,8,14),(3,15,9,21),(4,22,10,16),(5,17,11,23),(6,24,12,18),(25,41,31,47),(26,48,32,42),(27,43,33,37),(28,38,34,44),(29,45,35,39),(30,40,36,46)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F4G4H6A6B···6J8A8B8C8D8E12A···12F
order12222222234444444466···68888812···12
size112224441222222412121224···4661212124···4

39 irreducible representations

dim11111111222222248
type+++++++++++++-
imageC1C2C2C2C2C2C2C2S3D4D4D6D6C3:D4C3:D4D4oSD16D12.33C23
kernelD12.33C23D12:6C22C2xD4.S3D4.Dic3Q8.13D6Q8.14D6Q8oD12C3x2+ 1+42+ 1+4C3xD4C3xQ8C2xD4C4oD4D4Q8C3C1
# reps13313311131346221

Matrix representation of D12.33C23 in GL6(F73)

6400000
7180000
000100
0072000
00721722
0001721
,
5570000
6180000
00667061
006766112
006600
001267661
,
7200000
0720000
0000720
00172171
001000
0001721
,
7200000
0720000
0007200
001000
00721722
00720721
,
7200000
0720000
000010
00172171
0072000
0072101

G:=sub<GL(6,GF(73))| [64,71,0,0,0,0,0,8,0,0,0,0,0,0,0,72,72,0,0,0,1,0,1,1,0,0,0,0,72,72,0,0,0,0,2,1],[55,6,0,0,0,0,7,18,0,0,0,0,0,0,6,67,6,12,0,0,67,6,6,67,0,0,0,61,0,6,0,0,61,12,0,61],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,1,0,0,0,0,72,0,1,0,0,72,1,0,72,0,0,0,71,0,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,72,72,0,0,72,0,1,0,0,0,0,0,72,72,0,0,0,0,2,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,72,72,0,0,0,72,0,1,0,0,1,1,0,0,0,0,0,71,0,1] >;

D12.33C23 in GAP, Magma, Sage, TeX

D_{12}._{33}C_2^3
% in TeX

G:=Group("D12.33C2^3");
// GroupNames label

G:=SmallGroup(192,1395);
// by ID

G=gap.SmallGroup(192,1395);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,387,184,675,136,1684,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=b^2=1,c^2=d^2=e^2=a^6,b*a*b=a^-1,a*c=c*a,a*d=d*a,e*a*e^-1=a^7,b*c=c*b,b*d=d*b,e*b*e^-1=a^3*b,d*c*d^-1=a^6*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<